提交 a06a15c4 authored 作者: zengzhi's avatar zengzhi

auto commit

上级 e7b11f86
# 2021年03月02日运行日报:https://git.sjfx.com.cn/report/daily/blob/master/2021-03-02/daily.md
## 服务器情况
|服务器 |CPU使用率 |内存使用率 |主硬盘使用率 |查看详情 |
| :- | :-: | :-: | :-: | :- |
|v3nginx |- |- |- |http://47.98.156.252:17123/|
|v3-publish |10.6% |51.5% |56.7% |http://47.110.9.96:17123/|
|v3-base-mq001 |4.79% |69.3% |50.5% |http://114.55.171.242:17123/|
|v3-base-mq002 |4.69% |67.8% |30.6% |http://47.110.226.218:17123/|
|proxy-local |4.56% |31.9% |35% |http://47.96.14.81:17123/|
|v3eureka001 |12.1% |42.3% |32.4% |http://47.110.137.241:17123/|
|v3eureka002 |18.8% |66.7% |55.6% |http://114.55.171.107:17123/|
|v3-gateway001 |5.43% |40.9% |41.2% |http://47.111.11.230:17123/|
|v3-gateway002 |5.03% |37% |38.9% |http://47.110.14.10:17123/|
|v3-gateway003 |5.88% |38.1% |35.1% |http://47.110.12.94:17123/|
|v3-gateway004 |7.02% |38.5% |34.5% |http://114.55.169.175:17123/|
|v3-BS-F001 |16.5% |50.4% |32.3% |http://47.98.220.95:17123/|
|v3-BS-F002 |24.8% |78.1% |24.3% |http://47.111.105.30:17123/|
|v3-BS-H001 |16.1% |50.6% |35.8% |http://47.111.169.175:17123/|
|v3-BS-H002 |25.3% |77.5% |24.4% |http://114.55.171.6:17123/|
|v3-BS-G001 |16.3% |58.7% |47.6% |http://114.55.243.46:17123/|
|v3-BS-G002 |39.3% |76.4% |24.3% |http://47.98.158.5:17123/|
|v3-BS-I001 |15.4% |45.7% |25.9% |http://114.55.243.77:17123/|
|v3-BS-I002 |37.6% |77% |24.2% |http://114.55.242.246:17123/|
## 数据库情况
### rm-bp1qn4bl8d8p9mnm4
内存使用率: 最小值 48.81% 最大值 49.71% 平均值 0.0345448227936067%
CPU使用率: 最小值 2.31% 最大值 100% 平均值 11.3046421125782%
每秒IO请求次数: 最小值 0.03 最大值 2778.45 平均值 80.3887352328006
连接数: 最小值 512 最大值 550.55 平均值 522.195274496178
活跃连接数: 最小值 0 最大值 3.22 平均值 0.231612230715773
空间使用量: 总使用量;154909.18MB 数据使用量;148152.25MB 日志使用量;1102.56MB 临时使用量;0.12MB 系统使用量:5654.26MB
### rr-bp13k3q7292ce5t6k
内存使用率: 最小值 34.37% 最大值 34.38% 平均值 17.19%
CPU使用率: 最小值 4.44% 最大值 5.16% 平均值 4.8%
每秒IO请求次数: 最小值 170.68 最大值 172.1 平均值 171.39
连接数: 最小值 80 最大值 80 平均值 80
活跃连接数: 最小值 0.08 最大值 0.1 平均值 0.09
空间使用量: 总使用量;150236.76MB 数据使用量;145726.55MB 日志使用量;1238.25MB 临时使用量;0.01MB 系统使用量:3271.96MB
### rm-bp1piz35u161jjc92
内存使用率: 最小值 20.19% 最大值 20.19% 平均值 2.24333333333333%
CPU使用率: 最小值 68.08% 最大值 93% 平均值 87.8433333333333%
每秒IO请求次数: 最小值 2561.59 最大值 3171.45 平均值 2864.39333333333
连接数: 最小值 103 最大值 103 平均值 103
活跃连接数: 最小值 4.97 最大值 9.67 平均值 8.75777777777778
空间使用量: 总使用量;69979.99MB 数据使用量;58325.3MB 日志使用量;4610.45MB 临时使用量;0.13MB 系统使用量:7044.11MB
慢日志:[rm-bp1qn4bl8d8p9mnm4](rm-bp1qn4bl8d8p9mnm4slowsql.md)
慢日志(excel):[rm-bp1qn4bl8d8p9mnm4](rm-bp1qn4bl8d8p9mnm4slowsql.xlsx)
慢日志:[rm-bp1piz35u161jjc92](rm-bp1piz35u161jjc92slowsql.md)
慢日志(excel):[rm-bp1piz35u161jjc92](rm-bp1piz35u161jjc92slowsql.xlsx)
## zookeeper当前情况
zk_version 3.4.12-e5259e437540f349646870ea94dc2658c4e44b3b, built on 03/27/2018 03:55 GMT
zk_avg_latency 0
zk_max_latency 401
zk_min_latency 0
zk_packets_received 58470412
zk_packets_sent 58601779
zk_num_alive_connections 34
zk_outstanding_requests 0
zk_server_state leader
zk_znode_count 3860
zk_watch_count 1353
zk_ephemerals_count 2279
zk_approximate_data_size 1293879
zk_open_file_descriptor_count 68
zk_max_file_descriptor_count 1048576
zk_followers 3
zk_synced_followers 3
zk_pending_syncs 0
## Redis情况
Cpu使用率:1.37%
已用内存:325873720.13Byte
每秒总访问量:144.83
已用连接数:18.85
键总数:19208.32
设置过期时间的key数量:0
## 昨日注册情况
![register2020](register2020.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/30d95f90-881e-11ea-979a-f14794b858f7?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-03-01T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 7日注册情况
![7register2020](7register2020.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/9915a370-881e-11ea-979a-f14794b858f7?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-02-22T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 昨日访问情况
![vistpai](vistpai.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/8aee1530-86a7-11e9-b79e-3bd17e684a34?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-03-01T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
![visttable](visttable.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/94ad9340-86a5-11e9-b79e-3bd17e684a34?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-03-01T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 昨日请求数
![reqcount](reqcount.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/35503f30-86a8-11e9-b79e-3bd17e684a34?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-03-01T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 7日请求数
![7reqcount](7reqcount.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/b810fea0-86a8-11e9-b79e-3bd17e684a34?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-02-22T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 30日活跃用户
![30dua](30dua.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/f3046fc0-d39a-11ea-9393-a7051f55d459?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-01-30T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 30日活跃商户
![30dta](30dta.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/1f4c2650-d39a-11ea-9393-a7051f55d459?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-01-30T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 7日活跃小程序
![7dwxmini](7dwxmini.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/9f6a1380-433c-11eb-9073-096fd13043ce?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-02-22T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
## 30日活跃小程序
![30dwxmini](30dwxmini.jpg)
[url](http://kibana.sjfx.com.cn/app/kibana#/visualize/edit/9f6a1380-433c-11eb-9073-096fd13043ce?embed=true&_g=(refreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2021-01-30T16%3A00%3A00.000Z'%2Cmode%3Aabsolute%2Cto%3A'2021-03-02T15%3A59%3A59.999Z')))
|数据库名称|SQL语句|总执行次数|总执行时间(秒)|最大执行时长|平均执行时间|锁定总时长|最大锁定时长|解析总行数|解析最大行数|返回总行数|返回最大行数|
| - | - | - | - | - | - | - | - | - | - | - | - |
|statistic|select mt.tenant_id , mt.tenant_app_id , ifnull ( mt.shop_id , -1 ) shop_id , ifnull ( mt.employee_user_id , -1 ) employee_user_id , count ( * ) amount from member mb inner join member_extra mt on mb.id = mt.id where mb.tenant_app_id = :1 and mb.create_time <= :2 and mb.register_flag = :3 group by mt.tenant_id , mt.tenant_app_id , mt.shop_id , mt.employee_user_id|41|6806|394||0|0|28398876|983332|22167|1520|
|statistic|select mt.tenant_id , mt.tenant_app_id , ifnull ( mt.shop_id , -1 ) shop_id , ifnull ( mt.grade_erp_id , -1 ) grade_erp_id , count ( * ) amount from member mb inner join member_extra mt on mb.id = mt.id where mb.tenant_app_id = :1 and mb.create_time <= :2 and mb.register_flag = :3 group by mt.tenant_id , mt.tenant_app_id , mt.shop_id , mt.grade_erp_id|40|6519|363||0|0|29592742|983496|9620|399|
|statistic|select mb.tenant_id , mb.tenant_app_id , ifnull ( mt.shop_id , -1 ) shop_id , sum ( if ( mb.subscribe_flag = 1 , 0 , 1 ) ) cancel_amount , sum ( if ( mb.subscribe_flag = 1 , 1 , 0 ) ) subscribe_amount , sum ( if ( mb.bind_flag = 1 , 1 , 0 ) ) bind_amount , sum ( if ( mb.full_flag = 1 , 1 , 0 ) ) full_amount from member mb inner join member_extra mt on mb.id = mt.id where mb.tenant_app_id = :1 and mb.create_time <= :2 and mb.register_flag = :3 group by mb.tenant_id , mb.tenant_app_id , mt.shop_id|36|5259|391||0|0|23407538|982628|1440|87|
|tag_service|select t1.user_id , t1.user_name , t1.sex , t1.mobile_no , t1.age , t1.source_type as membersource , t1.subscribe_flag as subscribestatus , t1.full_flag as fullstatus , t2.grade_erp_id as gradeerp , t2.sales_balance as totalconsumemoney , t2.consumption_integral as totalconsumepoint , t2.cumulation as totalpoint , t2.balance as pointbalance , t2.sales_amount as consumenum , t2.follow_time as subscribetime , t2.cancel_follow_time as cancelsubscribetime , date_format ( t1.birthday , '%y-%m-%d' ) as birthday , ifnull ( t1.birthday_is_lunar , 0 ) as birthdayislunar , date_format ( t1.memorial_day , '%y-%m-%d' ) as memorialday , ifnull ( t1.memorial_day_is_lunar , 0 ) as memorialdayislunar , ifnull ( t1.memorial_name , '' ) as memorialname , t2.first_shop_time as firstentershoptime , t2.last_shop_time as lastentershoptime , t2.first_sales_time as firstconsumetime , t2.last_sales_time as latestconsumetime , t2.last_login_time as lastaccesstime , t2.last_service_time as lastservicetime , t2.last_score_time as lastscoretime , t2.registe_time as registertime , t2.category_name as categoryname , ( case when ifnull ( t1.partner_id , 0 ) > 0 then '联盟商家' when ifnull ( t1.agency_id , 0 ) > 0 then '钻石大使' else '会员' end ) as `identity` , ( case when t1.external_user_id is not null and t1.register_flag = :1 then :2 when t1.subscribe_flag = :3 and t1.register_flag = :4 then :5 else :6 end ) as `memberstate` , ifnull ( emp.employee_name , :7 ) as employeename , ifnull ( dept.shop_name , :8 ) as shopname , t1.tenant_app_open_id , t2.service_amount , ifnull ( t3.match_label , :9 ) as labelmatch from statistic.member t1 join statistic.member_extra t2 on t1.id = t2.id left join statistic.meta_erp_employee emp on t2.tenant_app_id = emp.tenant_app_id and t2.shop_id = emp.dept_erp_id and t2.employee_user_id = emp.employee_erp_id left join statistic.meta_erp_dept dept on t2.tenant_app_id = dept.tenant_app_id and t2.shop_id = dept.dept_erp_id left join tag_service.member_label_match t3 on t3.tenant_id = :10 and t1.tenant_app_id = t3.tenant_app_id and t1.user_id = t3.user_id where t1.tenant_app_id = :11 and t2.tenant_app_id = :12 order by t1.id asc limit :13|36|4737|187||0|0|238038336|6728517|720|20|
|statistic|select mb.tenant_id , mb.tenant_app_id , ifnull ( mt.shop_id , -1 ) shop_id , ifnull ( mb.source_type , 'unknow' ) source_type , count ( * ) amount from member mb inner join member_extra mt on mb.id = mt.id where mb.tenant_app_id = :1 and mb.create_time <= :2 and mb.register_flag = :3 group by mb.tenant_id , mb.tenant_app_id , mt.shop_id , mb.source_type|35|5637|445||0|0|23838738|983142|5310|276|
|statistic|select mb.tenant_id , mb.tenant_app_id , ifnull ( mt.shop_id , -1 ) shop_id , ifnull ( mt.employee_user_id , -1 ) user_id , count ( * ) service_amount , sum ( if ( mb.external_user_id is not null , 1 , 0 ) ) corp_amount , sum ( ifnull ( mt.member_image_flag , 0 ) ) image_amount from statistic.member mb inner join statistic.member_extra mt on mb.id = mt.id where mb.tenant_app_id = :1 and mb.create_time <= :2 and mb.register_flag = :3 group by mb.tenant_id , mb.tenant_app_id , mt.shop_id , mt.employee_user_id|29|4061|340||0|0|18443156|983270|18021|1520|
|tag_service|select t1.user_id , t1.user_name , t1.sex , t1.mobile_no , t1.age , t1.source_type as membersource , t1.subscribe_flag as subscribestatus , t1.full_flag as fullstatus , t2.grade_erp_id as gradeerp , t2.sales_balance as totalconsumemoney , t2.consumption_integral as totalconsumepoint , t2.cumulation as totalpoint , t2.balance as pointbalance , t2.sales_amount as consumenum , t2.follow_time as subscribetime , t2.cancel_follow_time as cancelsubscribetime , date_format ( t1.birthday , '%y-%m-%d' ) as birthday , ifnull ( t1.birthday_is_lunar , 0 ) as birthdayislunar , date_format ( t1.memorial_day , '%y-%m-%d' ) as memorialday , ifnull ( t1.memorial_day_is_lunar , 0 ) as memorialdayislunar , ifnull ( t1.memorial_name , '' ) as memorialname , t2.first_shop_time as firstentershoptime , t2.last_shop_time as lastentershoptime , t2.first_sales_time as firstconsumetime , t2.last_sales_time as latestconsumetime , t2.last_login_time as lastaccesstime , t2.last_service_time as lastservicetime , t2.last_score_time as lastscoretime , t2.registe_time as registertime , t2.category_name as categoryname , ( case when ifnull ( t1.partner_id , 0 ) > 0 then '联盟商家' when ifnull ( t1.agency_id , 0 ) > 0 then '钻石大使' else '会员' end ) as `identity` , ( case when t1.external_user_id is not null and t1.register_flag = :1 then :2 when t1.subscribe_flag = :3 and t1.register_flag = :4 then :5 else :6 end ) as `memberstate` , ifnull ( emp.employee_name , :7 ) as employeename , ifnull ( dept.shop_name , :8 ) as shopname , t1.tenant_app_open_id , t2.service_amount , ifnull ( t3.match_label , :9 ) as labelmatch from statistic.member t1 join statistic.member_extra t2 on t1.id = t2.id left join statistic.meta_erp_employee emp on t2.tenant_app_id = emp.tenant_app_id and t2.shop_id = emp.dept_erp_id and t2.employee_user_id = emp.employee_erp_id left join statistic.meta_erp_dept dept on t2.tenant_app_id = dept.tenant_app_id and t2.shop_id = dept.dept_erp_id left join tag_service.member_label_match t3 on t3.tenant_id = :10 and t1.tenant_app_id = t3.tenant_app_id and t1.user_id = t3.user_id where t1.tenant_app_id = :11 and t2.tenant_app_id = :12 and t3.match_label = :13 order by t1.id asc limit :14|6|837|150||0|0|10026006|1671001|120|20|
|tag_service|update member_label_match set match_label = :1 where id = :2|4|564|175||38|38|34613566|8653478|0|0|
|statistic|delete from statistic.batch_step_execution where step_execution_id <= :1|1|334|334||0|0|857313|857313|0|0|
|statistic|select tenant_id , tenant_app_id , ifnull ( shop_id , -1 ) shop_id , sum ( if ( tenant_app_open_id is null and external_user_id is null , :1 , :2 ) ) normal_amount , sum ( if ( tenant_app_open_id is not null and external_user_id is null , :3 , :4 ) ) app_amount , sum ( if ( external_user_id is not null , :5 , :6 ) ) corp_amount from member where tenant_app_id = :7 and create_time <= :8 and register_flag = :9 group by tenant_id , tenant_app_id , shop_id|1|101|101||0|0|491401|491401|87|87|
差异被折叠。
# 运行日志 # 运行日志
# 2021-03 # 2021-03
[2021-03-01](2021-03-01/daily.md)&ensp;&ensp;&ensp;&ensp; [2021-03-01](2021-03-01/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-03-02](2021-03-02/daily.md)&ensp;&ensp;&ensp;&ensp;
# 2021-02 # 2021-02
[2021-02-01](2021-02-01/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-02](2021-02-02/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-18](2021-02-18/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-19](2021-02-19/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-20](2021-02-20/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-21](2021-02-21/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-22](2021-02-22/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-23](2021-02-23/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-24](2021-02-24/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-25](2021-02-25/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-28](2021-02-28/daily.md)&ensp;&ensp;&ensp;&ensp; [2021-02-01](2021-02-01/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-02](2021-02-02/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-18](2021-02-18/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-19](2021-02-19/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-20](2021-02-20/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-21](2021-02-21/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-22](2021-02-22/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-23](2021-02-23/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-24](2021-02-24/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-25](2021-02-25/daily.md)&ensp;&ensp;&ensp;&ensp;[2021-02-28](2021-02-28/daily.md)&ensp;&ensp;&ensp;&ensp;
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论